Как измерить время, или маятник Галилея. Первые механические часы, часы с маятником Как сделать часы галилео галилея

13/05/2002

Более трехсот лет длилась эволюция маятниковых часов. Тысячи изобретений на пути к совершенству. Но в исторической памяти надолго останутся лишь те, кто поставил первую и последнюю точку в этой великой эпопее

Более трехсот лет длилась эволюция маятниковых часов. Тысячи изобретений на пути к совершенству. Но в исторической памяти надолго останутся лишь те, кто поставил первую и последнюю точку в этой великой эпопее.

Часы из телевизора
Перед любыми программами новостей на телевидении мы видим часы, секундная стрелка которых с большим достоинством отсчитывает последние мгновения до начала передачи. Этот циферблат - видимая часть айсберга под названием АЧФ-3, астрономические часы Федченко. Не каждый прибор носит имя конструктора, не обо всех изобретениях сообщают в энциклопедиях.

Часы Феодосия Михайловича Федченко удостоены такой чести. В любой другой стране об изобретателе подобного уровня знал бы каждый школьник. А у нас уже 11 лет назад тихо и скромно ушел из жизни выдающийся конструктор и никто о нем даже вспоминает. Почему? Наверное, в свое время был упрям, не умел льстить и лицемерить, что так не нравилось чиновникам от науки.
Помогла изобрести Федченко знаменитые часы случайность. Одна из тех загадочных случайностей, которая так украшает историю науки.

Две первые точки в истории маятниковых часов поставили два великих ученых - Галилео Галилей и Христиан Гюйгенс независимо друг от друга, создавшие часы с маятником, причем открытие законов колебания маятника пришло к Галилею тоже случайно. Кому-то на голову упадет кирпич -и ничего, даже сотрясения мозга не произойдет, а другому достаточно простого яблока, чтобы разбудить дремавшую в подсознании мысль для открытия закона всемирного тяготения. Великие случайности происходят, как правило, с великими личностями.

В 1583 году в Пизанском соборе любознательный юноша по имени Галилео Галилей не столько слушал проповедь, сколько любовался движением люстр. Наблюдения за светильниками показались ему интересными и, вернувшись домой, девятнадцатилетний Галилей изготовил опытную установку для исследования колебаний маятников - свинцовых шариков, укрепленных на тонких нитях. Собственный пульс служил ему хорошим секундомером.

Так, экспериментальным путем, Галилео Галилей открыл законы колебания маятника, которые сегодня изучают в каждой школе. Но Галилей в то время был слишком молод, чтобы думать о внедрении в жизнь своего изобретения. Вокруг столько интересного, надо спешить. И только в конце жизни, старый, больной и слепой старик, вспомнил о своих юношеских опытах. И его осенило - приставить к маятнику счетчик колебаний, - и получатся точные часы! Но силы Галилея были уже не те, ученый смог сделать только чертеж часов, завершил же работу его сын Винченцо, который вскоре умер и широкой огласки создание маятниковых часов Галилеем не получило.

Впоследствии Христиану Гюйгенсу всю жизнь необходимо было доказывать, что именно ему принадлежит честь создания первых маятниковых часов. По этому поводу в 1673 году он писал:
"Некоторые утверждают, что Галилей пытался сделать это изобретение, но не довел дело до конца; эти лица скорее уменьшают славу Галилея, чем мою, так как выходит, что я с большим успехом, чем он, выполнил ту же задачу".

Не так уж важно кто из этих двух великих ученых "первее" в деле создания часов с маятником. Гораздо значительнее то, что Христиан Гюйгенс не просто изготовил очередной тип часов, он создал науку хронометрию. С этого времени в деле конструирования часов был наведен порядок. "Лошадь" (практика) уже не бежала впереди "паровоза" (теории). Идеи Гюйгенса воплощал в жизнь парижский часовой мастер Исаак Тюре. Так увидели свет часы с различными конструкциями маятников, изобретенных Гюйгенсом.

Начало "карьеры" учителя физики
Феодосии Михайлович Федченко, родившийся в 1911 году ничего не знал о страстях по маятнику трехсотлетней давности. Да и вообще о часах он не думал. Его "карьера" началась в бедной сельской школе. Простой учитель физики вынужден был стать невольным изобретателем. Как же иначе, не имея должного оборудования, объяснить любознательным детишкам основополагающие законы природы.

Талантливый педагог конструировал сложные демонстрационные установки и, вероятно, его уроки школьники не пропускали. Война внесла коррективу в судьбу молодого изобретателя, Федченко стал незаурядным механиком танковых приборов. И вот первый звоночек судьбы - после окончания войны Феодосию Михайловичу предложили работу в Харьковском институте мер и измерительных приборов, в лаборатории, где среди научных тем была записана и такая: "Изыскание возможности увеличения точности хода часов со свободным маятником типа "Шорт"".

Его настольной книгой стал "Трактат о часах" Христиана Гюйгенса. Так заочно познакомился Ф. М. Федченко со своими знаменитыми предшественниками Христианом Гюйгенсом и Вильгельмом X. Шортом.

Предпоследняя точка в истории часов с маятником была поставлена английским ученым Вильгельмом X. Шортом. Правда, долгое время считалось, что создать часы с маятником точнее, чем часы Шорта невозможно. В 20-е годы XX века решили, что эволюция маятниковых приборов времени завершена. Каждая обсерватория не считалась достаточно оснащенной, если не имела астрономических часов Шорта, но платить за них приходилось золотом.

Один экземпляр часов Шорта приобрела Пулковская обсерватория. Английская фирма, установившая хранитель времени, запрещала к ним даже прикасаться, иначе снимала с себя всякую ответственность за настройку хитрого механизма. В 30-е годы Главной палате мер и весов в Ленинграде поручили разгадать секрет часов Шорта и начать изготавливать подобные устройства собственными силами. Талантливый метролог И. И. Кванберг долго разглядывал механизм часов через герметическое стекло цилиндра и попытался, не имея чертежей, изготовить копию. Копия была достаточно хорошей, но не идеальной. Всех английских тонкостей через стекло разглядеть было невозможно. Тем не менее, до войны на заводе "Эталон" было выпущено несколько экземпляров часов Кванберга.
Вот такую "простенькую" тему - изготовить часы точнее, чем это сделал Шорт - и поручили новичку Ф. М. Федченко, пришедшему после войны в харьковский институт.

Возвращение к истокам
Харьковский умелец установил, что еще в 1673 году Христиан Гюйгенс в "Трактате о часах" практически все сказал о том, как делать маятниковые часы. Оказывается, для того, чтобы часы были точными, необходимо, чтобы центр тяжести маятника в пространстве описывал не дугу окружности, а часть циклоиды: кривой, по которой движется точка на ободе колеса, катящегося по дороге. В этом случае колебания маятника будут изохронными, не зависящими от амплитуды. Сам Гюйгенс теоретически все обосновавший, пытался достичь цели, делая тысячи изобретений, но к идеалу не приблизился.

Последователи Гюйгенса, в том числе и Шорт, добивались точности другим путем -максимально изолировали маятник от внешних влияний, помещая точные часы глубоко в подвал, в вакуум, где минимально изменяется вибрация, температура
Федченко же, захотел осуществить мечту Гюйгенса и создать изохронный маятник. Говорят, что все идеальное - просто. Так и Федченко всего на всего подвесил маятник на три пружины - две длинные - по бокам и одну короткую - в середине. Казалось бы, ничего особенного, но на пути к открытию, были тысячи опытов. Были перепробованы пружины толстые и тонкие, длинные и короткие, плоские и с переменным сечением. Пять долгих лет терпеливой и кропотливой работы, неверие коллег, на него уже просто перестали обращать внимание и вдруг счастливый случай, благодаря элементарной ошибке в сборке подвеса.

Несколько винтов плохо закрутили, и подвес повел себя так, что маятник начал совершать изохронные колебания. Опыты проверяли и перепроверяли, все оставалось по-прежнему. Трех пружинный подвес маятника решал задачу Гюйгенса - при изменении амплитуды колебания, период оставался неизменным.
Столица, конечно, переманила талантливого изобретателя. В 1953 году Ф.М. Федченко перевели в Москву, в лабораторию маятниковых приборов времени создававшегося Всесоюзного научно-исследовательского института физико-технических и радиотехнических измерений.

Конечно, в Харькове это не понравилось. Федченко нанесли удар ниже пояса, - не отдали высокоточный импортный станок, стоивший громадных денег. В Москву изобретатель привез только три экземпляра первых опытных часов АЧФ-1. Для продолжения работы станок был необходим, в магазинах страны подобное оборудование не продавали. У частников, с трудом, но можно было найти нужный станок, и Федченко нашел. Но как платить? Наличные деньги в государственном учреждении не выдавали, тем более такую сумму -одиннадцать тысяч рублей.

Отчаявшийся Федченко, понимая, что без прецизионного оборудования он, как без рук, пошел на настоящую авантюру. Он напрямую обратился к управляющему Госбанка и нашел такие убедительные слова о значение своего изобретения, что умный и смелый человек, профессионал в своем деле, поверив мастеру, выдал ему нужную сумму наличными, в качестве документа потребовав просто расписку. Это один из примеров "очевидного, но невероятного".

Еще несколько десятилетий совершенствовали механизм астрономических часов Федченко, пока не появилась знаменитая модель - "АЧФ-3", принесшая славу, как автору, так и стране. Высокоточные часы демонстрировались на Всемирной выставке в Монреале, награждены медалями ВДНХ; описания часов включены в энциклопедии и в различные серьезные издания по хронометрии.

Блеск и трагедия изобретения Федченко
Ф. М. Федченко - создал высокоточные электронно-механические маятниковые часы в то время, когда уже начали появляться кварцевые, молекулярные и атомные приборы времени. Эти системы нельзя сравнивать. Каждая выполняет свои конкретные задачи и в своей области незаменима. Но, к сожалению, не все это понимают. Феодосии Михайлович Федченко никогда не был обделен вниманием ученых, своих коллег. Но вот чиновники, от которых часто зависит как судьба самого изобретателя, так и его изобретения, не всегда ведают, что творят.

В Госстандарте СССР относились к знаменитому конструктору прохладно. В 1973 году ВНИИФТРИ предложил выплатить изобретателю достойное вознаграждение за более чем двадцатипятилетнюю работу по созданию отечественных астрономических часов, принесших стране громадный экономический эффект и независимость от импорта прецизионных часовых механизмов. В Госстандарте сочли возможным урезать предложенное вознаграждение в 9 раз, сославшись на то, что "точность хода часов АЧФ-3 ниже действующих атомных часов". Конечно, ниже. Но атомные часы одни на всю страну, их обслуживает целый коллектив сотрудников, это Государственный эталон времени и частоты, а у часов Федченко совершенно другое назначение - это хранители времени. До сих пор часами Федченко оснащены многие телецентры, аэропорты, космодромы, обсерватории.

Разве кто-нибудь додумается сравнивать по скорости велосипед и космическую ракету. А в Госстандарте сравнили маятниковые часы Федченко, дающие погрешность в одну секунду за 15 лет с атомными часами, ошибающимися на ту же секунду за триста тысяч лет. Оценивать можно только аналогичного класса системы. Например, часы Федченко по сравнению с часами Шорта, намного дешевле, экономичнее, надежнее, удобнее в эксплуатации и на порядок точнее. Не будем обращать внимания на недальновидных и недобросовестных чиновников всех рангов. Главное, запомним, и будем гордиться, что наш соотечественник Феодосии Михайлович Федченко поставил последнюю точку в развитии маятниковых часов. Послушайте, как это гордо звучит - от Галилея и Гюйгенса до Федченко!

Мастер, конечно, знал цену себе и знал, что найдутся злопыхатели, которые попытаются умалить значение его изобретения. Чтобы не забыли о деле всей его жизни, Федченко сам пришел в 1970 году в Политехнический музей с предложением принять в дар и экспонировать часы его конструкции. Сегодня в маленьком зале московского музея можно увидеть многие шедевры часового искусства, в том числе и часы - изобретателя с большой буквы - Феодосия Михайловича Федченко

Часто ли задумываются люди над вопросом, когда и кто изобрел маятник , наблюдая за качанием маятника в часах? Этим изобретателем был Галилео . После бесед с отцом, (подробнее: ) Галилей вернулся в университет, но уже не на медицинский факультет, а на философский, где преподавали математику и физику. В те времена эти науки еще не отделялись от философии. На философском факультете Галилей решил терпеливо изучить , учение которого основывалось на созерцании и не подтверждалось опытами.

Галилей в Пизанском соборе

Всем студентам, по университетским правилам, полагалось посещать церковь. Галилео, будучи верующим человеком, унаследовал от отца равнодушие к церковным обрядам, и ревностным молельщиком назвать его было нельзя. Как сообщает его ученик Вивиани , в 1583 году Галилей , находясь во время богослужения в Пизанском соборе , обратил внимание на люстру , подвешенную к потолку на тонких цепочках. Служители, зажигавшие свечи в люстрах, видимо, толкнули ее, и тяжелая люстра медленно раскачивалась. Галилей стал наблюдать за ней: размахи люстры постепенно укорачивались, ослабевали, но Галилею показалось, что, хотя размахи люстры уменьшаются и затихают, время одного качания остается неизменным . Чтобы проверить эту догадку, нужны были точные часы, а часов Галилей не имел - их тогда еще не изобрели. Юноша догадался использовать вместо секундомера биение своего сердца. Нащупав на руке пульсирующую жилку, Галилей считал удары пульса и одновременно качание люстры. Догадка как будто подтверждалась, но люстра, к сожалению, перестала качаться, а подтолкнуть ее во время богослужения Галилей не решился.

Изобрел маятник Галилей

Вернувшись домой, Галилей провел опыты . Он привязал на нитки и стал раскачивать разные предметы, попавшиеся ему под руку: ключ от двери, камешки, пустую чернильницу и другие грузики. Эти самодельные маятники он подвесил к потолку и смотрел, как они качаются. Отсчет времени он по-прежнему вел по ударам пульса. Прежде всего Галилей убедился, что легкие предметы качаются так же часто, как и тяжелые, если они висят на нитках одинаковой длины. А зависят качания только от длины нити : чем нитка длиннее, тем реже качается маятник, а чем короче, тем качания чаще. Частота качаний зависит только от длины маятника, но отнюдь не от его веса . Галилей укоротил нитку, на которой висела пустая чернильница; сделал так, чтобы она качалась в такт биению пульса и на каждый удар сердца приходилось одно качание маятника. Затем он подтолкнул чернильницу, а сам уселся в кресло и стал считать пульс, наблюдая за маятником. Сначала чернильница, раскачиваясь, делала довольно широкие размахи и быстро летала из стороны в сторону, а потом ее размахи становились все меньше, а движение медленнее; таким образом время одного качания заметным образом не изменялось. И большие и малые размахи маятника все равно совпадали с ударами пульса. Но тут Галилей заметил, что от волнения его «секундомер» - сердце - начал биться быстрее и мешать опыту. Тогда он стал повторять свой опыт много раз подряд, чтобы успокоить сердце. В результате этих опытов Галилей убедился, что время одного качания заметным образом не меняется - оно остается одинаковым (если бы у Галилея имелись современные точные часы, он мог бы заметить, что небольшая разница между большими и маленькими качаниями все же есть, но она очень мала и почти неуловима).

Прибор пульсологий

Размышляя о своем открытии, Галилей подумал, что оно может пригодиться врачам, для того чтобы считать пульс у больных людей. Молодой ученый придумал небольшой приборчик , названный пульсологием . Пульсологий быстро вошел во врачебную практику. Врач приходил к больному, одной рукой щупал пульс, а другой подтягивал или удлинял маятник своего прибора так, чтобы качания маятника совпадали с ударами пульса. Потом по длине маятника врач определял частоту биения сердца больного. Эта история первого научного открытия Галилея показывает, что Галилей обладал всеми качествами настоящего ученого. Он отличался незаурядной наблюдательностью; тысячи, миллионы людей видели, как раскачиваются люстры, качели, плотницкие отвесы и другие предметы, подвешенные на шнурках, нитках или цепочках, и только Галилей сумел увидеть то, что ускользало от внимания многих. Он проверил свой вывод опытами и тотчас же нашел практическое применение этому открытию. К концу своей жизни ученый доказал, что изобретенный им маятник может стать прекрасным регулятором для часов . С тех пор маятник служит в стенных часах. Галилей сделал часы с маятником одним из точнейших механизмов.

Проблема измерения времени издавна стоит перед человеком. Сегодняшнее человеческое общество вообще не смогло бы наверное существовать без часов - приборов для точного измерения времени. Поезда не смогли бы ходить в соответствии с расписанием, рабочие завода не знали бы, когда приходить на работу, а когда уходить домой. С этой же проблемой столкнулись школьники и студенты.

В принципе, отмерять достаточно большие промежутки времени человек научился давно, ещё на рассвете своего развития. Такие понятия, как "сутки", "месяц", "год" появились ещё тогда. Первыми, кто разделил сутки на промежутки времени были, наверное, древние египтяне. В их сутках было 40 унут. И если промежуток времени в одни сутки можно измерить естественным образом (это время между двумя кульминациями Солнца), то для измерения более коротких промежутков времени необходимы специальные приборы. Это - солнечные, песочные и водяные часы. (Хотя, момент кульминации Солнца тоже без специальных приборов не определишь. Простейший специальный прибор - это палка, воткнутая в землю. Но об этом - как-нибудь в другой раз.) Все эти виды часов были изобретены ещё в античные времена и обладают рядом недостатков: они либо слишком неточны, либо отмеряют слишком короткие промежутки времени (например, песочные часы, больше подходящие в качестве таймера).

Особую важность точное измерение времени получило в средние века, в эпоху бурного развития мореплавания. Знание точного времени было необходимо штурману корабля для определения географической долготы. Поэтому, потребовался особо точный прибор для измерения времени. Для работы такого прибора необходим некий эталон, колебательная система, совершающая колебания за строго равные промежутки времени. Такой колебательной системой стал маятник.

Маятником называют систему, подвешенную в поле тяжести и совершающую механические колебания. Простейшим маятником является шарик, подвешенный на нити. Маятник обладает рядом интересных свойств. Важнейшим из них является то, что период колебаний маятника зависит только от длины подвеса и не зависит от массы груза и амплитуды колебаний (то есть, величины размаха). Это свойство маятника было впервые исследовано Галилеем.

Галилео Галилей


Галилея побудило к глубоким исследованиям маятников наблюдение колебаний люстры, в Пизанском Соборе. Эта люстра свисала с потолка на 49-метровом подвесе.

Пизанский собор. В центре снимка - та самая люстра.


Так как точных приборов для измерения времени тогда ещё не было, в своих опытах Галилей использовал в качестве эталона биение своего сердца. Он опубликовал исследование колебаний маятника и заявил, что период колебаний не зависит от их амплитуды. Так же было обнаружено, что периоды колебаний маятников соотносятся как квадратные корни из его длины. Эти исследования заинтересовали Христиана Гюйгенса, который первым предложил использовать маятник в качестве эталона для регулирования хода часов и первым создал реально действующий образец таких часов. Пытался создать маятниковые часы и сам Галилей, однако он умер не успев закончить эту работу.

Так, или иначе, но на несколько столетий вперёд эталоном для регулирования хода часов стал маятник. Маятниковые часы, созданные в этот период обладали достаточно высокой точностью, чтобы использовать их в навигации и в научных исследованиях и просто в быту. Только в середине ХХ века он уступил место кварцевому осциллятору, применяемому почти повсеместно, так как частота его колебаний более стабильна. Для ещё более точного измерения времени служат атомные часы с ещё более стабильной частотой колебаний регулятора хода. В них для этого используется цезиевый эталон времени.

Христиан Гюйгенс

Математически, закон колебаний маятника выглядит следующим образом:

В этой формуле: L - длина подвеса, g - ускорение свободного падения, Т - период колебаний маятника. Как видим, период Т не зависит ни от массы груза, ни от амплитуды колебаний. Он зависит только от длины подвеса, и ещё от значения ускорения свободного падения. То есть, к примеру, на Луне, период колебаний маятника будет другим.

А теперь, как я и обещал, даю ответ на задачку, опубликованную . Для того, чтобы измерить объём комнаты, надо измерить её длину, ширину и высоту, а потом перемножить их. Значит, необходим какой-нибудь эталон длины. Какой? Линейки - то у нас нет!!! Мы берём ботинок за шнурок и раскачиваем его как маятник. Секундомером мы измеряем время нескольких колебаний, к примеру - десяти, и поделив его на число колебаний, получаем время совершения одного колебания, то есть - период Т . А, если известен период колебаний маятника, то из уже известной вам формулы ничего не стоит высчитать длину подвеса, то есть - шнурка. Зная длину шнурка, мы пользуясь им как линейкой без труда вычислим длину, ширину и высоту комнаты. Вот такое решение казалось бы сложной задачки!!!

Спасибо за внимание!!!

Рисунок Леонардо да Винчи, изображающий часовой механизм

Так и оказалось: каждый ход люстры-маятника, имел одну и ту же длительность. Позже Галилей установил: эта длительность или, как говорят физики, период колебаний, нисколько не зависит от массивности маятника, а лишь - от его длины. Чем он короче, тем меньше времени занимает каждое колебание.

Только в конце жизни на вилле Арчетри (близ Флоренции) осужденный инквизицией за признание учения Коперника и едва не отправленный на костер Галилей смог заняться созданием давно задуманных им часов. Близкий друг ученого Вивиани вспоминал: «В один из дней 1641 года, когда я находился на вилле Арчетри, Галилей поделился со мной своими мыслями о возможности присоединить маятник к часам».

Но старый ученый (ему шел уже 78 год), ослепший и потерявший силы, не смог закончить начатую работу. Он попросил сделать это своего сына Винченцо. Вскоре Галилей умер. Винченцо выполнил просьбу отца, сделал модель часов, но судьба ее оказалась печальной.

Великий итальянский ученый Галилео Галилей

Механизм маятниковых часов Галилея

Сын ученого Винченцо Галилей показывает модель маятниковых часов своего отца

Винченцо ненадолго пережил своего гениального отца. Перед смертью в приступе тяжелой душевной болезни он уничтожил часы, и много лет о них никто ничего не знал.

Потерянное первенство

Не знал о часах Галилея и голландский ученый Христиан Гюйгенс. В 1658 году (через 16 лет после смерти Галилея) в Гааге вышла его небольшая книжка под коротким названием «Часы». В ней Гюйгенс писал об изобретенных им маятниковых часах. И только эта небольшая книжка была издана, как возникла неприятная шумиха.

Вивиани (его имя уже упоминалось) заявил, что первенство в изобретении часов с маятником принадлежит вовсе не Гюйгенсу, а Галилею, который на много лет опередил голландца.

Маятниковые часы Христиана Гюйгенса со шпиндельным ходом

Гюйгенс был честным человеком и не стал отрицать первенство Галилея. Когда один французский ученый прислал ему рисунок галилеевских часов, он написал в ответ: «Вы доставили мне большое удовольствие, переслав чертеж часов, начатых Галилеем. Я вижу, что они имеют маятник, однако он применен не так, как у меня».

Гюйгенс заверял, что маятниковые часы создал совершенно самостоятельно, «руководствуясь только своим собственным умом и ничем другим», да и по устройству они сильно отличаются от часов Галилея. Он может лишь гордиться тем, что вслед за великим Галилеем пришел к той же мысли.

Хотя Гюйгенс и потерял первенство, все равно его заслуги в часовом деле, в науке о часах огромны. После него началась новая страница в истории часов.

Но каково же было устройство часов Гюйгенса?

Знаменитый голландский ученый Христиан Гюйгенс

Они, как и часы с билянцем, имели коронное колесо (только расположенное иначе, горизонтально) и шпиндель с палетами. При качании маятника связанный с ним шпиндель своими палетами так же то задерживал, то отпускал коронное колесо на один зубец, получая в ответ толчок. Это не позволяло мятнику остановиться. А вращение коронного колеса передавалось другим шестеренкам и стрелкам. Двигателем же часов по-прежнему служила гиря, подвешенная на цепочке.

Суточная погрешность часов Гюйгенса не превышала десяти секунд, но оказалось, что можно сделать и лучше. Английский ученый Роберт Гук предложил анкерный ход - более точный, чем шпиндельный. Над зубчатым ходовым колесиком Гук поместил анкер, деталь, напоминающую маленький якорь. Соединенный с маятником, он тоже раскачивался и, цепляясь за зубцы ходового колеса, регулировал его движение. А в ответ, получая от зубцов толчки, сам раскачивал маятник.

Зато у себя дома в рабочем кабинете, который стал первой на нашей планете физической лабораторией, Галилей ухитрился замедлить падение. Оно стало доступно и взгляду и тщательному, неторопливому изучению.

Ради этого Галилей построил длинный (в двенадцать локтей) наклонный желоб. Изнутри обил его гладкой кожей. И спускал по нему отшлифованные шары из железа, бронзы, кости.

Делал, например так.

К шару, находившемуся в желобе, прикреплял нитку. Перекидывал ее через блок, а к другому ее концу подвешивал гирю, которая могла опускаться или подниматься отвесно. Гирю тянула вниз ее собственная тяжесть, а вверх, через нить, - шарик из наклонного желоба. В результате шарик и гиря двигались так, как хотел экспериментатор - вверх или вниз, быстро или медленно, смотря по наклону желоба, весу шарика и весу гири. Шарик и гиря могли, таким образом, перемещаться под действием силы тяжести. А это и было падение. Правда, не свободное, искусственно замедленное.

Сперва Галилей отыскал закон устойчивого состояния этой системы: вес гири, помноженный на высоту поднятого конца наклонного желоба, должен быть равен весу шарика, помноженному на длину желоба. Так появилось условие равновесия системы - галилеевский закон наклонной плоскости.

О падении и его секретах еще ничего не было сказано.

Неподвижность изучать нетрудно: она постоянна во времени. Проходят секунды, минуты, часы - ничто не меняется.

Весы да линейки - вот и все, что нужно для измерений * .

* (Потому-то с глубокой древности начала развиваться статика-область физики, занимающаяся всякого рода неподвижностями: уравновешенными весами, блоками, рычагами. Все это вещи нужные, понимать их важно и полезно, недаром им посвятил много времени прославленный грек Архимед. Даже в неподвижности он подметил многое, что необходимо изобретателям "возможных машин Тем не менее, если быть придирчивым, это еще не была настоящая физика. Это была только подготовка к ней. подлинная физика началась с изучения движений. )

Затем Галилей стал изучать движение шаров. Этот-то день и был днем рождения физики (увы, календарная дата его неведома). Потому что именно тогда подвергся первому лабораторному исследованию процесс, изменяющийся во времени. Пошли в ход не только линейки, но и часы. Галилей научился отмеривать длительность событий, то есть исполнять главную операцию, присущую всякому физическому эксперименту.

Поучительна легенда о лабораторных часах Галилея. В то время нельзя было купить в магазине секундомер. Даже ходиков еще не изобрели. Галилей же вышел из положения совсем особым образом. Он отсчитывал время ударами своего пульса, потом, как уверяют давние биографы, устроил неплохие лабораторные часы из неожиданных составных частей: ведра, весов и хрустального бокала. В дне ведра проделал дырочку, через которую текла ровная струйка воды. По солнцу замечал, сколько унций воды вытекало за час, и затем высчитывал вес воды, вытекающей за минуту и за секунду.

И вот опыт. Ученый опускает в желоб шар и тут же подставляет под струйку бокал. Когда шар достигает заранее намеченной точки, быстро отодвигает бокал. Чем дольше катился шар, тем больше натекло воды. Ее остается поставить на весы - и время измерено. Чем не секундомер!

"Мои секунды мокрые, - говорил Галилей, - но зато их можно взвешивать".

Соблюдая элементарную строгость, стоит, впрочем, заметить, что эти часы не так просты, как может показаться. Вряд ли Галилей учитывал уменьшение давления (а значит, и скорости) водяной струи с понижением уровня воды в ведре. Этим можно пренебречь, лишь если ведро очень широкое, а струйка - узкая. Возможно, так оно и было.